Salta al contenuto principale
Home

Dedicated to discovery

  • A proposito di ELGA
    • A proposito di ELGA
    • Carriere
    • Eventi
  • Supporto
    • Laboratory Planning
    • Registra un Prodotto
    • Register Your Product (USA & Canada Only)
  • Contatti
  • U.S.A.
  • U.K.
  • Deutschland
  • España
  • France
  • Brasil
  • 日本
  • 中国
Home
  • Prodotti
    • PURELAB
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 2 +
      • PURELAB® Chorus 3
      • PURELAB® flex 1
      • PURELAB® flex 2
      • PURELAB® flex 3
      • PURELAB® flex 4
      • PURELAB® flex 5
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • ELGA Gamma Completa di Prodotti
      • PURELAB® Classic
  • Applicazioni
    • Analisi microbiologica
    • Biochimica clinica
    • Colture cellulari
    • Cromatografia liquida
    • Elettrochimica
    • Gascromatografia
    • Genetica
    • Immunochimica
    • Requisiti dell'acqua per laboratori generici
    • Spettrofotometria
    • Spettrometria di massa
    • Spettroscopia atomica
  • Tecnologie
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurità nell'acqua
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Conoscenza
    • Blog
    • Casi di studio
    • Acqua ultrapura
    • Guide e libri bianchi
  • Partner Approvati
  • Contattaci
Home
  • Contattaci
  • Prodotti
    • PURELAB
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 2 +
      • PURELAB® Chorus 3
      • PURELAB® flex 1
      • PURELAB® flex 2
      • PURELAB® flex 3
      • PURELAB® flex 4
      • PURELAB® flex 5
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • ELGA Gamma Completa di Prodotti
      • PURELAB® Classic
  • Applicazioni
    • Analisi microbiologica
    • Biochimica clinica
    • Colture cellulari
    • Cromatografia liquida
    • Elettrochimica
    • Gascromatografia
    • Genetica
    • Immunochimica
    • Requisiti dell'acqua per laboratori generici
    • Spettrofotometria
    • Spettrometria di massa
    • Spettroscopia atomica
  • Tecnologie
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurità nell'acqua
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Conoscenza
    • Blog
    • Casi di studio
    • Acqua ultrapura
    • Guide e libri bianchi
  • Partner Approvati
  • Contattaci
  • A proposito di ELGA
    • A proposito di ELGA
    • Carriere
    • Eventi
  • Supporto
    • Laboratory Planning
    • Registra un Prodotto
    • Register Your Product (USA & Canada Only)
  • Contatti
  • U.S.A.
  • U.K.
  • Deutschland
  • España
  • France
  • Brasil
  • 日本
  • 中国
  • Normativa sulla privacy
  • Termini e condizioni
  • Dichiarazioni di conformità legale globale
  • Brevetti
  • Impressum
  • Home
  • Measuring the effects of indoor air pollution
Environment & Sustainability

Measuring the effects of indoor air pollution

16 Gen 2023
- by Dr Alison Halliday

Measuring the effects of indoor air pollution


Researchers set out a new approach for studying the risk of chronic exposure to potentially toxic indoor air on human health.

Poor indoor air quality is potentially a greater health risk than outdoor pollution as we spend about 90% of time indoors – such as at home, school, work or visiting shops or restaurants. Chronic exposure to poor-quality indoor air has been linked to lung diseases like asthma and lung cancer, heart diseases and stroke. Children are particularly vulnerable to poor indoor air quality because their lungs are still developing.


Indoor air pollution is dust, dirt or gases in the air inside buildings that could be harmful to breathe in. The main sources of these unwanted pollutants are building and cleaning materials, furnishings, electronic equipment – and combustion from burning fuels (such as gas stoves and wood burners), tobacco or candles.

Typically, indoor air contains a complex mixture of many different chemicals at low concentrations. But while the amount of each substance may be negligible and cause no adverse health effects, in combination they may pose a risk to human health. But most studies of indoor air quality are currently focussed on measuring the concentration of individual substances.

A holistic approach

In a new study, published in Current Research in Toxicology, researchers used several methods to assess the potential overall toxicity and health hazard of indoor air.1

The researchers collected a total of 40 water samples condensed from indoor air from different facilities in Finland – including homes, public buildings, offices and schools. They applied a series of different tests on the samples to assess their biological effects. They also measured the concentrations of 25 volatile organic compounds (VOCs) and Genapol X-80 (a chemical that is widely used in cleaning products) suspected to be present – as well as performing a ‘total chemical scan’ for the presence of any unknown substances.

The team could not detect the defined VOCs or Genapol X-80 in the indoor air samples, yet they identified several adverse biological effects including cytoxicity, immunotoxicity, skin sensitisation and hormone disruption. They also found a larger number of unknown chemicals in the cytotoxic samples than in the non-cytotoxic samples, further supporting the validity of the selected biological methods.

The researchers used ultrapure water generated from an ELGA PURELAB® laboratory water purification system for all chemical analyses, minimising the risk of introducing contaminants that may affect their results.

Monitoring complexity

This study highlights the extensive complexity of assessing the safety of indoor air condensates, which are typically a mixture of many chemicals at extremely low concentrations. The results confirm that assessing the toxicity of indoor air by the analysis of individual substances is an inadequate approach. In the case of such complex samples, it is more appropriate to consider them as unknown mixtures and to monitor their overall toxicological profile.

Why choose ELGA LabWater

ELGA LabWater has been a trusted name in pure and ultrapure water since 1937. Our dedication to ultrapure and pure water is a guarantee that we will continue to provide the best solutions with the best service.

 

Reference:

  1. Marika, M. et al. New approach methods for assessing indoor air toxicity. Curr Res Toxicol. 2022; Oct 13;3:100090. doi: 10.1016/j.crtox.2022.100090

 

 

Dr Alison Halliday

After completing an undergraduate degree in Biochemistry & Genetics at Sheffield University, Alison was awarded a PhD in Human Molecular Genetics at the University of Newcastle. She carried out five years as a Senior Postdoctoral Research Fellow at UCL, investigating the genes involved in childhood obesity syndrome. Moving into science communications, she spent ten years at Cancer Research UK engaging the public about the charity’s work. She now specialises in writing about research across the life sciences, medicine and health.

 

 

  • Enquiry
  • Richiedi un Preventivo
  • Prenota una Demo
  • Trova un Partner Approvato

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Richiedi un Preventivo

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Prenota una Demo

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Headquarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

ELGA LabWater Sede Centrale

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

Casi di Studio

  • Abbott Diagnostics
  • DASA Diagnostica Medica
  • NeoDIN Istituto Medico
  • North Staffordshire NHS Trust
  • Scuola Professionale Olsberg

Risorse

  • Informazioni sull'acqua ultrapura
  • Guide e libri bianchi
  • Tecnologie per la purificazione dell'acqua
  • Applicazioni di laboratorio
  • Impurità nell'acqua

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. che opera come ELGA LabWater. 2023 - Tutti i diritti riservati.
ELGA è il marchio mondiale dell'acqua di laboratorio di Veolia.

  • Normativa sulla privacy
  • Termini e condizioni
  • Dichiarazioni di conformità legale globale
  • Brevetti
  • Impressum
  • Lingua
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Altri Siti Veolia
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia