Salta al contenuto principale
Home

Dedicated to discovery

  • A proposito di ELGA
    • A proposito di ELGA
    • Carriere
    • Eventi
  • Supporto
    • Laboratory Planning
  • Contatti
  • EN
  • DE
  • ES
  • FR
  • PT
  • EN-US
Home
  • Prodotti
    • PURELAB
      • PURELAB® Dispenser
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 150
      • MEDICA® 7/15
      • MEDICA® BIOX 2024
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY® 30
    • ELGA Gamma Completa di Prodotti
  • Applicazioni
    • Analisi microbiologica
    • Biochimica clinica
    • Colture cellulari
    • Cromatografia liquida
      • High Performance Liquid Chromatography
    • Elettrochimica
    • Gascromatografia
    • Genetica
    • High Performance Liquid Chromatography (HPLC)
    • Immunochimica
    • Requisiti dell'acqua per laboratori generici
    • Spettrofotometria
    • Spettrometria di massa
    • Spettroscopia atomica
  • Tecnologie
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurità nell'acqua
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Conoscenza
    • BROSCHÜREN
    • Blog
    • Casi di studio
    • Acqua ultrapura
    • Guide e libri bianchi
  • Where to buy
  • Contattaci
Home
  • Contattaci
  • Prodotti
    • PURELAB
      • PURELAB® Dispenser
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 150
      • MEDICA® 7/15
      • MEDICA® BIOX 2024
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY® 30
    • ELGA Gamma Completa di Prodotti
  • Applicazioni
    • Analisi microbiologica
    • Biochimica clinica
    • Colture cellulari
    • Cromatografia liquida
      • High Performance Liquid Chromatography
    • Elettrochimica
    • Gascromatografia
    • Genetica
    • High Performance Liquid Chromatography (HPLC)
    • Immunochimica
    • Requisiti dell'acqua per laboratori generici
    • Spettrofotometria
    • Spettrometria di massa
    • Spettroscopia atomica
  • Tecnologie
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurità nell'acqua
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Conoscenza
    • BROSCHÜREN
    • Blog
    • Casi di studio
    • Acqua ultrapura
    • Guide e libri bianchi
  • Where to buy
  • Contattaci
  • A proposito di ELGA
    • A proposito di ELGA
    • Carriere
    • Eventi
  • Supporto
    • Laboratory Planning
  • Contatti
  • EN
  • DE
  • ES
  • FR
  • PT
  • EN-US
  • Normativa sulla privacy
  • Termini e condizioni
  • Dichiarazioni di conformità legale globale
  • Brevetti
  • Trademarks
  • Impressum
  • Degradation of metaldehyde through photolysis of TiO2 and H2O2
Life in The Lab

Degradation of metaldehyde through photolysis of TiO2 and H2O2

14 Feb 2022
- by ELGA Editorial Team

Degradation of metalhyde through photolysis of TiO2 and H202Advanced oxidation processes (AOP) have been shown to be effective when treating drinking water to remove micropollutants, including those that are not susceptible to conventional purification protocols. UK scientists at Cranfield University, in collaboration with Severn Trent Water, have therefore studied the photodegradation of the pesticide metaldehyde by UV activated TiO2 and H2O2.

 
AOP is a group of destructive reaction processes that can be used to regulate micropollutants in water. A common approach in AOP is to activate different chemicals – such as TiO2, H2O2 and H2O2/Fe3+ – using UV light, producing highly reactive hydroxyl radicals (∙OH). Several studies have been conducted to assess various ∙OH forming compounds’ ability to remove organic pollutants, both from natural and laboratory grade water, which suggest that H2O2 is the most effective choice. However, it was also acknowledged that this conclusion may not hold for all pollutants and types of water. This ambiguity motivated the scientists at the Cranfield Water Science Institute, Department of Environmental Science and Technology, Cranfield University, Bedfordshire, to collaborate with Severn Trent Water in the West Midlands to investigate the matter further, studying degradation of the pesticide metaldehyde through photolysis of TiO2 and H2O2.1
 
Metaldehyde is commonly found in slug pellets and has been widely used in agriculture, horticulture and domestic gardens since 1970. Although it is considered a simple compound that is only moderately soluble in water, it has been found in treated drinking water as well as ground and surface water in the UK. The difficulty in successfully removing this pollutant has caused hundreds of water treatment plants in the country to fail inspection by the Drinking Water Inspectorate (DWI). Although there has been progress in the removal of metaldehyde from drinking water in recent years, more efficient methods are needed.
 

Sample preparation and analysis

Laboratory grade water was prepared using a PURELAB® system from ELGA LabWater. Surface water was collected from a reservoir in the Severn Trent Water region, stored at 4 °C and filtered prior to the experiment. Metaldehyde was extracted from aqueous samples by solid phase extraction using styrene-divinylbenzene cartridges. The cartridge was then conditioned, rinsed, dried and treated with dichloromethane followed by further drying. The substance was then analysed by gas chromatography-mass spectrometry and high-performance liquid chromatography.
 
 

The results

The study showed that, under optimal conditions, both UV/H2O2 and UV/TiO2 had the same capacity to remove metaldehyde from laboratory grade water. There was, however, a big difference in the performance of the two methods when natural water was used instead. TiO2 adsorption was already limited by 
metaldehyde needing to be close to the TiO2/liquid interface for a reaction to occur and, since natural water contained background organic matter, the efficacy was further reduced when non-target molecules attached to the surface. Luckily, UV activated H2O2 gave much better results; an irradiation of 600 mJcm-2 and an H2O2 concentration of 8 mM removed 95 % of metaldehyde. Interestingly, when the concentration of H2O2 was increased to 100 mM, the efficiency decreased and only 45 % of the metaldehyde was degraded. This was explained by the fact that at higher concentrations H2O2 starts to compete with the pesticide for the ∙OH molecules, which play the main role in the degradation reaction.
 

Future applications

UV-based AOP is currently the only method that can efficiently remove metaldehyde from water. This method is, however, costly compared to traditional pathways, since there are no LED light sources that can deliver high doses of UV radiation in an economic manner. For UV/AOP to work on a large scale it is necessary to research cheaper ways to provide the required energy input.
 

Why Choose ELGA LabWater?

The presence of impurities in laboratory water can be a major problem in research experiments, and can seriously compromise results. ELGA LabWater has been a trusted name in pure and ultrapure water since 1937. We believe in providing you with water purification solutions that can meet a wide range of needs and applications, backed by excellent service and support. For more information on our Type I ultrapure water systems, check out our PURELAB Quest, PURELAB Chorus 1 Complete and our PURELAB Flex models.
 
1 Autin O et al. 2012. Comparison of UV/H2O2 and UV/TiO2 for the degradation of metaldehyde: Kinetics and the impact of background organics. Water research 46: 5655-5662.
  • Sales Enquiry
  • Richiedi un Preventivo
  • Technical Support
  • Trova un Partner Approvato

Sales Enquiry

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Richiedi un Preventivo

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Technical Support

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater Sede Centrale

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

Casi di Studio

  • Abbott Diagnostics
  • DASA Diagnostica Medica
  • NeoDIN Istituto Medico
  • North Staffordshire NHS Trust
  • Scuola Professionale Olsberg

Risorse

  • Informazioni sull'acqua ultrapura
  • Guide e libri bianchi
  • Tecnologie per la purificazione dell'acqua
  • Applicazioni di laboratorio
  • Impurità nell'acqua
  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. che opera come ELGA LabWater. 2025 - Tutti i diritti riservati.
ELGA è il marchio mondiale dell'acqua di laboratorio di Veolia.

  • Normativa sulla privacy
  • Termini e condizioni
  • Dichiarazioni di conformità legale globale
  • Brevetti
  • Trademarks
  • Impressum
  • Lingua
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Altri Siti Veolia
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia